TUPLES, LISTS,
ALIASING,
MUTABILITY, CLONING

(download slides and .py files and follow along!)

6.0001 LECTURE 5

LAST TIME

= functions

= decomposition — create structure
= abstraction — suppress details

= from now on will be using functions a lot

6.0001 LECTURE 5 2

TODAY

= have seen variable types: int, float, bool, string

" introduce new compound data types
* tuples
* lists

= idea of aliasing
" idea of mutability

" idea of cloning

6.0001 LECTURE 5 3

TUPLES

= an ordered sequence of elements, can mix element types

= cannot change element values,/immutable o
o0
. A\
" represented WI:[‘h parentheses “”“\0 S
X 3
«®
te = (2
() ‘\)Q\e
t = (2,"mit", 3)
t[0] — evaluates to 2
(2,"mit",3) + (5,6) - evaluatesto (2, "mit", 3,5, 6)
t[1:2] - slice tuple, evaluatesto ("mit"|,) (0(03
O Q\e X
: " : " ‘(6 ’a"\) ((\8(\
t[1:3] - slice tuple, evaluatesto ("mit",3) et 2 e
o
len (t) - evaluates to 3 R

t[1] = 4 -> gives error, can’t modify object

6.0001 LECTURE 5 4

TUPLES

= conveniently used to swap variable values

X =Yy temp = x (x, v) = (y, X)

X .-

= used to return more than one value from a function

def quotilent and remainder (x, y):

g = X / / Y \(\\'e%ej(.
. \O
r=x %y SV
return (g, r)
(quot, rem) = quotient and remainder (4,5)

6.0001 LECTURE 5 5

MANIPULATING TUPLES

S
@ N “\(\%

aTuple: “ @ ,
= can iterate over tuples \\ \\ /

mans (N
def get data (aTuple): \

pums = [0 words (
Q¢
WY words = ()

—]
[

=J ‘\h
N

? ?

«ﬁfﬂ , if not already in words
© for t in aTuple: : : .
) i.e. unique strings from aTuple
nums = nums + | (t[0],)
e
\Q@ if t[1l] not in words:
\e©
B\ words = words + (t[1],)
min n = min (nums)
max n = max (nums)
unique words = len(words)

return (min n, max n, unique words)

6.0001 LECTURE 5 6

LISTS

= ordered sequence of information, accessible by index

= 3 list is denoted by square brackets, []

= 3 list contains elements
* usually homogeneous (ie, all integers)
 can contain mixed types (not common)

= list elements can be changed so a list is mutable

6.0001 LECTURE 5 7

INDICES AND ORDERING

Wb

a list =|[] 6@“
L = [2, 'a', 4, [1,2]]

len (L) =2 evaluatesto 4

L[O] - evaluates to 2

L[2]+1 -> evaluatesto5

L[3] — evaluatesto [1, 2], another list!
L[4] — gives an error

1 = 2

L[i-1] =2 evaluatesto‘@’since.[1]='a' above

CHANGING ELEMENTS

= |ists are mutable!

= 3assigning to an element at an index changes the value
L = [2, 1, 3]
L[1] =5

"Lisnow [2, 5, 31, note thisisthe same object L

—— SN

ITERATING OVER A LIST

= compute the sum of elements of a list _\\@&«\("i‘e
= common pattern, iterate over list elements cz‘:“;e\\%‘(\xs
e
total = 0 total = 0 é§@§N
for 1 1n range(len (L)) : for 1 in|L:
total += L[1] total += 1
print total print total
" notice

 |ist elements areindexed 0 to len (L) -1

* range (n) goesfrom 0 ton-1

6.0001 LECTURE 5

OPERATIONS ON LISTS - ADD

= add elements to end of list with L.. append (element)

= mutates the list!
L = [2,1,3]
L.append (5) - Lisnow [2,1,3,5]

\

= what is the dot?
* lists are Python objects, everything in Python is an object

* objects have data

* objects have methods and functions

* access this information by ocbject name.do something()
* will learn more about these later

6.0001 LECTURE 5

OPERATIONS ON LISTS - ADD

= to combine lists together use concatenation, + operator,
to give you a new list

* mutate list with L. extend (some list)

L1 = [2,1,3]
L2 = [4,5,06]

L3 = L1 + L2 - L3is[2,1,3,4,5,6]
L1, L2 unchanged

Ll.extend ([0, 6]) - mutatedL1to [2,1,3,0,6]

OPERATIONS ON LISTS -
REMOVE

= delete element at a specific index with del (L[index])

" remove element at end of list with .. pop (), returns the
removed element

" remove a specific element with L.. remove (element)
* |ooks for the element and removes it
* if element occurs multiple times, removes first occurrence
 if element not in list, gives an error

e L = [2,1,3,6,3,7,0] # do below in order
Se L.remove (2) 2 mutatesL = [1,3,6,3,7,0]

oP~ (& L.remove (3) > mutatesL = [1,6,3,7,0]
T del(L[1]) > mutatesL = [1,3,7,0]

_ L.pop () = returns 0 and mutates L. = [1, 3, 7]

6.0001 LECTURE 5 13

CONVERT LISTS TO STRINGS
AND BACK

= convert string to list with 1ist (s), returns a list with every
character from s an element in L.

"canuse s.split (), tosplit astring on a character parameter,
splits on spaces if called without a parameter

"use ''.join (L) toturn a list of characters into a string, can
give a character in quotes to add char between every element
s = "I<3 cs" - sisastring
list (s) 2 returns ['I','<','3', " ', 'c',"s"]
s.split ('<") 2 returns ['I', '3 cs']
L= 1['a','b',"c'] - Lisalist
''".Join (L) - returns "abc"

' '.Join(L) -2 returns "a b c"

6.0001 LECTURE 5

OTHER LIST OPERATIONS

"= sort () and sorted ()

" reverse ()

= and many more!
https://docs.python.org/3/tutorial/datastructures.html

L.=[9,6,0,3]

sorted (L) = returns sorted list, does not mutate L
L.sort () - mutates L=[0, 3, 6, 9]
L.reverse () - mutates L=[9, 6, 3, 0]

6.0001 LECTURE 5

https://docs.python.org/3/tutorial/datastructures.html

MUTATION, ALIASING, CLONING

IMPORTANT

and
TRICKY!

Again, Python Tutor is your best friend
to help sort this out!

http://www.pythontutor.com/

http://www.pythontutor.com/

LISTS IN MEMORY

= lists are mutable

= behave differently than immutable types

" is an object in memory

= variable name points to object

= any variable pointing to that object is affected

= key phrase to keep in mind when working with lists is
side effects

6.0001 LECTURE 5

AN ANALOGY

= attributes of a person
° singetr, rich

" he is known by many names

= all nicknames point to the same person
* add new attribute to one nickname ...

e ... all his nicknames refer to old attributes AND all new ones

6.0001 LECTURE 5 18

ALIASES

" hot is an alias for warm — changing one changes the

other!

" append () has a side effect

a =1
b =a
print(a)
print(b)

warm = ['red’, 'yellow', 'orange']
hot = warm

hot.append('pink")

print(hot)

print(warm)

1
1
["red', 'vellow',
["red', 'vellow',

'orange', 'pink']
'orange', 'pink']

Frames Objects

Global frame list
0

llredll

1
"yvellow"

2
"orange"

3

a 1 "pink"

b |1
warm

hot

6.0001 LECTURE 5

CLONING A LIST

= create a new list and copy every element using
chill = cool][:]

cool = ['blue', 'green', 'grey'] [:Eiue:: ‘green’, ‘grey’, 'black’]
chill = cool[:] [‘blue’, 'green’, 'grey']

chill.append(black") #
print(chill) Frames Objects
print(cool) .
Global frame list
.,,,"_—_———).- 0 1 2
c@ﬂl "bluE“ 1|green1| 1|grey||

chill
list
0 1 2 3

"blue" 1|green1| 1|gr‘ey|| "bla(:k"

6.0001 LECTURE 5

SORTING LISTS

= calling sort () mutates the list, returns nothing

["orange', 'red', 'vellow']

" calling sorted () ione

['grey', 'green', 'blue']
does not mutate ['blue'J 'gp&eﬂ') 'gpey']
list, must assign
result to a variable Frames Objects
warm = ['red', 'yellow', 'orange'] | Global frame list
_ 0 1 2
SDTtedwarm = warm.sort() warm 'ffrr__ﬁﬂil‘knﬂnge" SR
print(warm) sortedwarm None
print(sortedwarm)
cool '“—*——~Mx\3knst
' T v ' sortedcool 0 1 2
cool = ['grey', 'green', 'blue'] "orey” | "green" | "blue"
sortedcool = sorted(cool)
print(cool) list
print(sortedcool) 0 1 2
1Ib1uell 1Igreen1l .”gr‘e}l'"

6.0001 LECTURE 5

LISTS OF LISTS OF LISTS OF....

= can have nested lists

= side effects still [['vellow', ‘orange’], ['red']]
. . ['red', 'pink"]
possible after mutation (('yeiion:. orange'l, ['red’. 'pink'l]
4
Frames Objects

warm = ['yellow', 'orange’] Global frame 'Et 1

hot = ['red”] warmm "yellow"” | "orange"
brightcolors = [warm] hot

brightcolors.append(hot) brightcolors et
print(brightcolors) 0 1
hot.append('pink") “red “pink”
print(hot)

print(brightcolors)

6.0001 LECTURE 5

MUTATION AND ITERATION
Try this in Python Tutor!

= avoid mutating a list as you are iterating over it

def remove dups(Ll, L2):
for e in L1l:

if e in L2:
x L1l.remove (e)
L1l = [1/ 2/ 3/ 4]
L2 - [1, 2/ 5/ 6]

remove dups (L1, L2)

= .1 is[2,3,4] not [3,4]

def remove dups(Ll, L2):
L1l copy =5 L1[:]
for e in L1 copy:

if e 1in L2:
L1l.remove (e)

Why?

* Python uses an internal counter to keep track of index it is in the loop
* mutating changes the list length but Python doesn’t update the counter

* loop never sees element 2

6.0001 LECTURE 5

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

